A survey of Pfaffian orientations of graphs
نویسنده
چکیده
An orientation of a graph G is Pfaffian if every even cycle C such that G\V (C) has a perfect matching has an odd number of edges directed in either direction of the cycle. The significance of Pfaffian orientations is that if a graph has one, then the number of perfect matchings (a.k.a. the dimer problem) can be computed in polynomial time. The question of which bipartite graphs have Pfaffian orientations is equivalent to many other problems of interest, such as a permanent problem of Pólya, the even directed cycle problem, or the sign-nonsingular matrix problem for square matrices. These problems are now reasonably well-understood. On the other hand, it is not known how to efficiently test if a general graph is Pfaffian, but there are some interesting connections with crossing numbers and signs of edgecolorings of regular graphs. Mathematics Subject Classification (2000). Primary 05C75; Secondary 05C10, 05C20, 05C38, 05C70, 05C83, 05C85, 68R10, 82B20.
منابع مشابه
Pfaffian Orientation and Enumeration of Perfect Matchings for some Cartesian Products of Graphs
The importance of Pfaffian orientations stems from the fact that if a graph G is Pfaffian, then the number of perfect matchings of G (as well as other related problems) can be computed in polynomial time. Although there are many equivalent conditions for the existence of a Pfaffian orientation of a graph, this property is not well-characterized. The problem is that no polynomial algorithm is kn...
متن کاملDrawing 4-Pfaffian graphs on the torus
We say that a graph G is k-Pfaffian if the generating function of its perfect matchings can be expressed as a linear combination of Pfaffians of k matrices corresponding to orientations of G. We prove that 3-Pfaffian graphs are 1-Pfaffian, 5-Pfaffian graphs are 4-Pfaffian and that a graph is 4-Pfaffian if and only if it can be drawn on the torus (possibly with crossings) so that every perfect m...
متن کاملPfaffian Orientations, 0/1 Permanents, and Even Cycles in Directed Graphs
The following issues in computational complexity remain imprecisely understood: The striking difference in the complexities of computing the permanent and determinant of a matrix despite their similar looking formulae, the complexity of checking if a directed graph contains an even length cycle, and the complexity of computing the number of perfect matchings in a graph using Pfaffian orientatio...
متن کاملPfaffian labelings and signs of edge colorings
We relate signs of edge-colorings (as in classical Penrose’s result) with “Pfaffian labelings”, a generalization of Pfaffian orientations, whereby edges are labeled by elements of an Abelian group with an element of order two. In particular, we prove a conjecture of Goddyn that all k-edge-colorings of a k-regular Pfaffian graph G have the same sign. We characterize graphs that admit a Pfaffian ...
متن کاملOn the Theory Of Pfaffian Orientations
This is a continuation of our paper " A Theory of Pfaffian Orientations I: Perfect Matchings and Permanents ". We present a new combinatorial way to compute the generating functions of T-joins and k-cuts of graphs. As a consequence, we show that the computational problem to find the maximum weight of an edge-cut is polynomially solvable for the instances (G, w) where G is a graph embedded on an...
متن کامل